Irrigation Water Management

The art of timing and controlling water applications to meet crop needs

Where the Water Goes

Stored in root zone (used by plants)

Lost by surface runoff

Lost by deep percolation

Lost by evaporation

Benefits

- Maximize Production
- Save Energy Costs
- Decrease Labor
- Decrease Un-desirable Vegetation

Methods

- Check Book Method
- Monitor Soil Moisture

Definitions

- Soil Water Holding Capacity (In)
- Soil Intake Rate (In/Hr)
- Maximum Allowable Depletion (MAD) (%)
- Evapo-Transpiration (ET) (In)

Evapo-Transpiration

- Atmometer
- Weather Stations
 - Ccc.atmos.colostate.edu/%7ecoagmet/
 - Other

Maximum Allowable Depletion (MAD)

• Grass 50-60%

• Small Grains 50%

• Alfalfa 40-70%

Critical Period

Grass – Early Spring, Early Fall

Small Grains – Boot and Bloom Stage

Alfalfa - Early Spring and after cuttings

Rooting Depth

Grass
 30 Inches

Small Grains 4 Feet

Alfalfa8 Feet

Symptoms of Water Stress

Grass – Dull Green Color – Wilting

Alfalfa – Darkening Color - Wilting

- Small Grains Dull Green Color
 - Firing of lower leaves

Balance Sheet

Date	MAD	ET	Rain	Irrigation	Depletion
8/14	2.25				0
8/15		.5	0		.5
8/16		.5			1
8/17		.25			1.25
8/18		.5	.25		1.5
8/19		.5			2.0
8/20		.25		3.0	0

Monitoring Soil Moisture

- Hand Feel Method
- Tensiometers
- Watermark Sensors
- Soil Probe

Cost Summary

 Tensiometers 	\$70
----------------------------------	------

- Watermark Meter \$300
- Watermark Sensors \$10
- Atmometer \$350
- Soil Probe \$45

Useful Equations

Irrigators Equation
Qt=Ad

- Q = Flow Rate (CFS)
- t = Time (Hours)
- A = Area (Acres
- d = Depth (Inches)

- d=Qt/A
- Q=Ad/t
- t=Ad/Q
- A=Qt/d

Useful Equations

- Nozzle Size (Q) = (In/HR x Area) / 96.3
- $In/Hr = (Q \times 96.3) / Area$

OR

Inches = (CFS x Hours) / Acres